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Abstract
A quasi-periodic packing Q of interpenetrating copies of C, most of them only
partially occupied, can be defined in terms of the strip projection method for
any icosahedral cluster C. We show that in the case when the coordinates
of the vectors of C belong to the quadratic field Q[

√
5] the dimension of the

superspace can be reduced, namely Q can be re-defined as a multi-component
model set by using a six-dimensional superspace.

PACS number: 61.44.Br

1. Introduction

An icosahedral quasi-crystal can be regarded as a quasi-periodic packing of copies of a well-
defined icosahedral atomic cluster. Most of these interpenetrating copies are only partially
occupied. From a mathematical point of view, an icosahedral cluster C can be defined as
a finite union of orbits of a three-dimensional (3D) representation of the icosahedral group,
and there exists an algorithm [3, 4] which leads from C directly to a pattern Q which can be
regarded as a union of interpenetrating partially occupied translations of C. This algorithm,
based on the strip projection method and group theory, represents an extended version of the
model proposed by Katz and Duneau [12] and independently by Elser [8] for the icosahedral
quasi-crystals.

The dimension of the superspace used in the definition of Q is rather large, and the main
purpose of this paper is to present a way to reduce this dimension. It is based on the notion of
multi-component model set, an extension of the notion of model set, proposed by Baake and
Moody [2].

2. Quasi-periodic packings of icosahedral clusters

It is known that the icosahedral group Y = 235 = 〈a, b | a5 = b2 = (ab)3 = e〉 has five
irreducible non-equivalent representations, and its character table is
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1e 12a 15b 20ab 12a2

�1 1 1 1 1 1
�2 3 τ −1 0 τ ′

�3 3 τ ′ −1 0 τ

�4 4 −1 0 1 −1
�5 5 0 1 −1 0

(1)

where τ = (1 +
√

5)/2 and τ ′ = (1 − √
5)/2.

A realization of �2 in the usual 3D Euclidean space E3 = (R3, 〈,〉) is the representation
{Tg : E3 −→ E3 | g ∈ Y } generated by the rotations Ta, Tb : E3 −→ E3

Ta(α, β, γ ) =
(

τ − 1

2
α − τ

2
β +

1

2
γ,

τ

2
α +

1

2
β +

τ − 1

2
γ,−1

2
α +

τ − 1

2
β +

τ

2
γ

)
(2)

Tb(α, β, γ ) = (−α,−β, γ ).

The entries of the matrices of Ta, Tb in the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Ta = 1

2


τ − 1 −τ 1

τ 1 τ − 1
−1 τ − 1 τ


 Tb =


−1 0 0

0 −1 0
0 0 1


 (3)

belong to the quadratic field Q[
√

5] = Q[τ ]. In the case of this representation, there are the
trivial orbit Y (0, 0, 0) = {(0, 0, 0)} of length 1, the orbits

Y (α, ατ, 0) = {Tg(α, ατ, 0) | g ∈ Y } where α ∈ (0,∞) (4)

of length 12 (vertices of a regular icosahedron), the orbits

Y (α, α, α) = {Tg(α, α, α) | g ∈ Y } where α ∈ (0,∞) (5)

of length 20 (vertices of a regular dodecahedron), the orbits

Y (α, 0, 0) = {Tg(α, 0, 0) | g ∈ Y } where α ∈ (0,∞) (6)

of length 30 (vertices of an icosaidodecahedron), and all the other orbits are of length 60.
Let C be a fixed icosahedral cluster containing only orbits of length 12, 20 and 30. It can

be defined as

C =
⋃
x∈S

Yx =
⋃
x∈S

{Tgx | g ∈ Y } = {Tgx | g ∈ Y, x ∈ S} = YS (7)

where the set S contains a representative of each orbit. Since Q[τ ] is dense in R, we can
assume that

S ⊂ {(α, ατ, 0) | α ∈ Q[τ ], α > 0} ∪ {(α, α, α) | α ∈ Q[τ ], α > 0}
∪{(α, 0, 0) | α ∈ Q[τ ], α > 0}

without a significant loss of generality in the description of atomic clusters. Since the orbits of
Y of length 12, 20 and 30 are symmetric with respect to the origin, the cluster C has the form

C = {e1, e2, . . . , ek,−e1,−e2, . . . ,−ek} (8)

and for each vector ei = (ei1, ei2, ei3) the coordinates ei1, ei2, ei3 belong to Q[τ ].
Let ε1 = (1, 0, . . . , 0), ε2 = (0, 1, 0, . . . , 0), . . . , εk = (0, . . . , 0, 1) be the canonical

basis of Ek . For each g ∈ Y, there exist the numbers s
g

1 , s
g

2 , . . . , s
g

k ∈ {−1; 1} and a permutation
of the set {1, 2, . . . , k} denoted also by g such that,

Tgej = s
g

g(j)eg(j) for all j ∈ {1, 2, . . . , k}. (9)
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Theorem 1 [3, 4]. The formula

gεj = s
g

g(j)εg(j) (10)

defines the orthogonal representation

g(x1, x2, . . . , xk) = (
s
g

1 xg−1(1), s
g

2 xg−1(2), . . . , s
g

k xg−1(k)

)
(11)

of Y in Ek.

Theorem 2 [3, 4]. The subspace

E = {(〈u, e1〉, 〈u, e2〉, . . . , 〈u, ek〉) | u ∈ E3} (12)

of Ek is Y-invariant and the vectors

v1 = �(e11, e21, . . . , ek1) v2 = �(e12, e22, . . . , ek2) v3 = �(e13, e23, . . . , ek3)

where � = 1/
√

(e11)2 + (e21)2 + · · · + (ek1)2 form an orthonormal basis of E.

Theorem 3 [3, 4]. The subduced representation of Y in E is equivalent to the representation
of Y in E3, and the isomorphism of representations

I : E3 −→ E Iu = (�〈u, e1〉, �〈u, e2〉, . . . , �〈u, ek〉) (13)

with the property I(α, β, γ ) = αv1 + βv2 + γ v3 allows us to identify the ‘physical’ space E3

with the subspace E of Ek .

Theorem 4 [3, 4]. The matrix of the orthogonal projector π : Ek −→ Ek corresponding to E
in the basis {ε1, ε2, . . . , εk} is

π = �2




〈e1, e1〉 〈e1, e2〉 · · · 〈e1, ek〉
〈e2, e1〉 〈e2, e2〉 · · · 〈e2, ek〉

· · · · · · · · · · · ·
〈ek, e1〉 〈ek, e2〉 · · · 〈ek, ek〉


 . (14)

Let κ = 1/�, L = κZk , π⊥ : Ek −→ Ek , π⊥x = x − πx be the orthogonal projector
corresponding to the subspace

E⊥ = {x ∈ Ek | 〈x, y〉 = 0 for all y ∈ E} (15)

and let K be a set obtained by shifting the hypercube

[0, κ]k = {(x1, x2, . . . , xk) | 0 � xi � κ}
such that no point of π⊥(L) belongs to the boundary of K = π⊥(K).

Theorem 5 [3, 4]. The Z-module L ⊂ Ek is Y-invariant, π(κεi) = Iei , that is π(κεi) = ei if
we take into consideration the identification I : E3 −→ E, and

π(L) = Ze1 + Ze2 + · · · + Zek. (16)

The pattern defined by using the strip projection method [12]

Q = {πx | x ∈ L, π⊥x ∈ K} (17)

can be regarded as a union of interpenetrating copies of C, most of them only partially occupied.
For each point πx ∈ Q, the set of all the arithmetic neighbours of πx

{πy | y ∈ {x + κε1, . . . , x + κεk, x − κε1, . . . , x − κεk}, π⊥y ∈ K}
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is contained in the translated copy

{πx + e1, . . . , πx + ek, πx − e1, . . . , πx − ek} = πx + C
of the G-cluster C. The fully occupied clusters occurring in Q correspond to the points x ∈ L

satisfying the condition [12]

π⊥x ∈ K ∩
k⋂

i=1

(π⊥(κεi) + K) ∩
k⋂

i=1

(−π⊥(κεi) + K). (18)

Generally, only a small part of the clusters occurring in Q can be fully occupied. A fragment of
Q can be obtained by using, for example, the algorithm presented in [16]. The main difficulty
is the rather large dimension k of the superspace Ek used in the definition of Q.

3. Icosahedral multi-component model sets

We shall re-define the pattern Q as a multi-component model set by using a 6D subspace
of Ek . The automorphism

ϕ : Q[τ ] −→ Q[τ ] (19)

of the quadratic field Q[τ ] that maps
√

5 �→ − √
5 has the property ϕ(τ) = τ ′. The

representation (2) is related through ϕ to the representation {T ′
g : E3 −→ E3 | g ∈ Y }

belonging to �3 generated by the rotations T ′
a, T

′
b : E3 −→ E3

T ′
a(α, β, γ ) =

(
τ ′ − 1

2
α − τ ′

2
β +

1

2
γ,

τ ′

2
α +

1

2
β +

τ ′ − 1

2
γ,−1

2
α +

τ ′ − 1

2
β +

τ ′

2
γ

)
(20)

T ′
b(α, β, γ ) = (−α,−β, γ ).

If instead of the representation (2) and cluster C, we start from the representation (20) and the
cluster

C′ = {e′
1, e

′
2, . . . , e

′
k,−e′

1,−e′
2, . . . ,−e′

k} (21)

where

e′
i = (e′

i1, e
′
i2, e

′
i3) = (ϕ(ei1), ϕ(ei2), ϕ(ei3)) (22)

then we get the same representation of Y in Ek and the Y-invariant subspace

E′ = {(〈u, e′
1〉, 〈u, e′

2〉, . . . , 〈u, e′
k〉) | u ∈ E3}. (23)

The vectors

v′
1 = �′(e′

11, e
′
21, . . . , e

′
k1) v′

2 = �′(e′
12, e

′
22, . . . , e

′
k2) v′

3 = �′(e′
13, e

′
23, . . . , e

′
k3)

where �′ = 1/
√

(e′
11)

2 + (e′
21)

2 + · · · + (e′
k1)

2 form an orthonormal basis of E′, and the matrix
of the orthogonal projector π ′ : Ek −→ Ek corresponding to E′ in the basis {ε1, ε2, . . . , εk}
is

π ′ = �′2




〈e′
1, e

′
1〉 〈e′

1, e
′
2〉 · · · 〈e′

1, e
′
k〉

〈e′
2, e

′
1〉 〈e′

2, e
′
2〉 · · · 〈e′

2, e
′
k〉

· · · · · · · · · · · ·
〈e′

k, e
′
1〉 〈e′

k, e
′
2〉 · · · 〈e′

k, e
′
k〉


 . (24)

Theorem 6. The projectors π and π ′ are orthogonal, that is

ππ ′ = π ′π = 0

and the projector π + π ′ corresponding to the subspace E = E ⊕ E′ has rational entries.
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Proof. Consider the linear mapping

A : E3 −→ E3 : u �→ Au where Au =
k∑

i=1

〈u, ei〉e′
i .

Since A is a morphism of representations

A(Tgu) =
k∑

i=1

〈Tgu, ei〉e′
i =

k∑
i=1

〈
u, T −1

g ei

〉
e′
i

= T ′
g

(
k∑

i=1

〈
u, T −1

g ei

〉
T ′−1

g e′
i

)
= T ′

g

(
k∑

i=1

〈u, ei〉e′
i

)
= Tg(Au)

between the irreducible non-equivalent representations (2) and (20), from Schur’s lemma it
follows that A = 0, that is

∑k
i=1〈u, ei〉e′

i = 0 for any u ∈ E3. Particularly, we have
k∑

i=1

〈ej , ei〉〈e′
i , e

′
l〉 =

〈
k∑

i=1

〈ej , ei〉e′
i , e

′
l

〉
= 0

whence ππ ′ = 0. In a similar way we can prove that π ′π = 0. Since

�′2〈e′
i , e

′
j 〉 = ϕ(�2〈ei, ej 〉)

we get �′2〈e′
i , e

′
j 〉 + �2〈ei, ej 〉 ∈ Q, that is the projector π + π ′ has rational entries. �

Theorem 7. The collection of spaces and mappings

πx ← x : E
π←− E π ′−→ E′ : x → π ′x

∪
L

(25)

where L = (π + π ′)(L), is a cut and project scheme [2, 14].

Proof. Since, in view of theorems 5 and 6, we have

π ′(L) = π ′(π + π ′)(L) = π ′(L) =
k∑

i=1

Ze′
i

the set π ′(L) is dense in E′. For each x ∈ L there is κy ∈ L with y ∈ Zk such that
x = (π + π ′)(κy). If πx = 0 then π(π + π ′)(κy) = 0, whence π(κy) = 0. But,
π(κy) = κπy, and hence we have πy = 0. Since y ∈ Zk , from πy = 0 we get π ′y = 0,
whence x = (π + π ′)y = 0. This means that π restricted to L is injective. �

Let E′′ = E⊥ = {x ∈ Ek | 〈x, y〉 = 0 for all y ∈ E} and let π ′′ : Ek −→ Ek, π
′′x =

x −πx −π ′x be the corresponding orthogonal projector (see figure 1). The lattice L = L ∩ E
is a sublattice of L, and necessarily [L : L] is finite. Since π ′′ has rational entries the projection
L′′ = π ′′(L) of L on E′′ is a discrete countable set. Let Z = {zi | i ∈ Z} be a subset of L

such that L′′ = π ′′(Z) and π ′′zi �= π ′′zj for i �= j . The lattice L is contained in the union of
the cosets Ei = zi + E = {zi + x | x ∈ E}

L ⊂
⋃
i∈Z

Ei . (26)

Since L ∩ Ei = zi + L the set

Li = (π + π ′)(L ∩ Ei ) = (π + π ′)zi + L (27)

is a coset of L in L for any i ∈ Z.
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EE ′

E ′′ E⊥

K
Ki

Kj

E
Ei = zi + E

Ej = zj + E

Figure 1. The decompositions Ek = E ⊕ E⊥ = E ⊕ E′ ⊕ E′′ = E ⊕ E′′.

Only for a finite number of cosets Ei the intersection

Ki = K ∩ Ei = K ∩ π⊥(Ei ) = π⊥(K ∩ Ei ) ⊂ π ′′zi + E′ (28)

is non-empty. By changing the indexation of the elements of Z if necessary, we can assume
that the subset of E′

Ki = π ′(Ki) = π ′(K ∩ Ei ) ⊂ E′ (29)

has a non-empty interior only for i ∈ {1, . . . , m}. The ‘polyhedral’ set Ki satisfies the
conditions:

(a) Ki ⊂ E′ is compact;
(b) Ki = int(Ki );
(c) The boundary of Ki has the Lebesgue measure 0

for any i ∈ {1, . . . , m}. This allows us to re-define Q in terms of the 6D superspace E as a
multi-component model set [2]

Q =
m⋃

i=1

{πx | x ∈ Li , π
′x ∈ Ki}. (30)

It is known [6] that this is the minimal embedding for a 3D quasi-periodic point set with
icosahedral symmetry. The main difficulty in this new approach is the determination of the
‘atomic surfaces’ Ki .

4. Concluding remarks

There exist several models for the icosahedral quasi-crystals, and almost all of them are defined
by using, directly or indirectly, a 6D superspace. We hope that the 6D version of our model
presented in this paper will help crystallographers to compare our model with other models,
and to use it. In the case of certain computer calculations based on our model the kD version
seems to be more advantageous than the 6D one.

Elser and Henley [7] and Audier and Guyot [1] have obtained models for icosahedral
quasi-crystals by decorating the Ammann rhombohedra occurring in a tiling of the 3D space
defined by projection [8, 12]. In his quasi-unit cell picture, Steinhardt [15] has shown
(following an idea of Gummelt [10]) that the atomic structure can be described entirely by
using a single repeating cluster which overlaps (shares atoms with) neighbouring clusters.
The model is determined by the overlap rules and the atom decoration of the unit cell. Some
important models have been obtained by Yamamoto and Hiraga [17, 18], Katz and Gratias
[13] and Gratias et al [9] by using the section method in a 6D superspace decorated with
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several polyhedra (acceptance domains). Janot and de Boissieu [11] have shown that a model
of a icosahedral quasi-crystal can be generated recursively by starting from a pseudo-Mackay
cluster and using some inflation rules. In the case of all these models, one has to add or shift
some points in order to fill the gaps between the clusters, and one has to eliminate some points
from interpenetrating clusters if they become too close. These geometric corrections increase
the number of local configurations and are difficult to explain energetically. In the case of all
these models, only for a very small part of the points are the neighbouring points distributed
on the vertices of the generating cluster.

Our mathematical model is different. The patterns Q have the remarkable mathematical
properties of the patterns obtained by projection [12, 14]. They are exactly defined (no
correction rules are necessary), and each point of the pattern (without exception) is the centre
of a more or less occupied copy of C. The clusters corresponding to neighbouring points
share several points. The arithmetic neighbours of a point are disposed at the same distance
independently of the considered point, and in agreement with the orientation of the generating
cluster (there is a strict short and long range order). For each atom there is the tendency to
dispose its neighbours in the same configuration, namely to become the centre of the same
cluster. The reduction of the dimension of the superspace has led us in a natural way to the
use of several sublattices, each of them with a specific window.

Several extensions of the presented model are possible. In this paper we have tried to
avoid any unnecessary complication and to present a both simple and relevant version. We
have considered a particular window and clusters containing only orbits of length 12, 20 and
30 (the experimental data show that these are the clusters occurring in most cases).

If we start from S = {(1, τ, 0)} we re-obtain the well-known model proposed by Katz
and Duneau, and independently by Elser. In this case k = 6 and m = 1, that is we obtain
directly a model set defined in a 6D superspace. For each point πx ∈ Q (without exception)
the arithmetic neighbours of πx are distributed on the vertices of the icosahedron πx + C.

The pattern Q is a union of interpenetrating copies of C (generally, partially occupied), has a
uniform distribution of points and it is not necessary to eliminate/add new points. A similar
situation occurs in all our models.

As concerns the reduction of the superspace dimension, the reader can find an worked
example with m = 4 in [5]. It concern the 2D Penrose case, but the situation in the case of
our icosahedral patterns is similar.
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